\(\int \frac {(B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx\) [846]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 303 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {\left (a^2 B-3 b^2 B+2 a b C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a^2 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}-\frac {(3 b B-2 a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {b \left (a^2 B-3 b^2 B+2 a b C\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}} \]

[Out]

b*(B*a^2-3*B*b^2+2*C*a*b)*sin(d*x+c)/a^2/(a^2-b^2)/d/(a+b*cos(d*x+c))^(1/2)-(B*a^2-3*B*b^2+2*C*a*b)*(cos(1/2*d
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*(a+b*cos(d*x+c))^(
1/2)/a^2/(a^2-b^2)/d/((a+b*cos(d*x+c))/(a+b))^(1/2)+B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic
F(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a/d/(a+b*cos(d*x+c))^(1/2)-(3*B*b
-2*C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(b/(a+b))^(1/2
))*((a+b*cos(d*x+c))/(a+b))^(1/2)/a^2/d/(a+b*cos(d*x+c))^(1/2)+B*tan(d*x+c)/a/d/(a+b*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 1.32 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.262, Rules used = {3108, 3079, 3135, 3138, 2734, 2732, 3081, 2742, 2740, 2886, 2884} \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {b \left (a^2 B+2 a b C-3 b^2 B\right ) \sin (c+d x)}{a^2 d \left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}-\frac {\left (a^2 B+2 a b C-3 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a^2 d \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {(3 b B-2 a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}}+\frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}} \]

[In]

Int[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

-(((a^2*B - 3*b^2*B + 2*a*b*C)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(a^2*(a^2 - b^2
)*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)])) + (B*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/
(a + b)])/(a*d*Sqrt[a + b*Cos[c + d*x]]) - ((3*b*B - 2*a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[2, (
c + d*x)/2, (2*b)/(a + b)])/(a^2*d*Sqrt[a + b*Cos[c + d*x]]) + (b*(a^2*B - 3*b^2*B + 2*a*b*C)*Sin[c + d*x])/(a
^2*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + (B*Tan[c + d*x])/(a*d*Sqrt[a + b*Cos[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3079

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*
(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]^
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n
, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3108

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3135

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c
+ d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C
)*(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n +
3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && L
tQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(B+C \cos (c+d x)) \sec ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx \\ & = \frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}}+\frac {\int \frac {\left (\frac {1}{2} (-3 b B+2 a C)+\frac {1}{2} b B \cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{a} \\ & = \frac {b \left (a^2 B-3 b^2 B+2 a b C\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}}+\frac {2 \int \frac {\left (-\frac {1}{4} \left (a^2-b^2\right ) (3 b B-2 a C)+\frac {1}{2} a b (b B-a C) \cos (c+d x)-\frac {1}{4} b \left (a^2 B-3 b^2 B+2 a b C\right ) \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a^2 \left (a^2-b^2\right )} \\ & = \frac {b \left (a^2 B-3 b^2 B+2 a b C\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}}-\frac {2 \int \frac {\left (\frac {1}{4} b \left (a^2-b^2\right ) (3 b B-2 a C)-\frac {1}{4} a b \left (a^2-b^2\right ) B \cos (c+d x)\right ) \sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{a^2 b \left (a^2-b^2\right )}-\frac {\left (a^2 B-3 b^2 B+2 a b C\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )} \\ & = \frac {b \left (a^2 B-3 b^2 B+2 a b C\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}}+\frac {B \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a}-\frac {(3 b B-2 a C) \int \frac {\sec (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{2 a^2}-\frac {\left (\left (a^2 B-3 b^2 B+2 a b C\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{2 a^2 \left (a^2-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}} \\ & = -\frac {\left (a^2 B-3 b^2 B+2 a b C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a^2 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {b \left (a^2 B-3 b^2 B+2 a b C\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}}+\frac {\left (B \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{2 a \sqrt {a+b \cos (c+d x)}}-\frac {\left ((3 b B-2 a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{2 a^2 \sqrt {a+b \cos (c+d x)}} \\ & = -\frac {\left (a^2 B-3 b^2 B+2 a b C\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{a^2 \left (a^2-b^2\right ) d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {B \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a d \sqrt {a+b \cos (c+d x)}}-\frac {(3 b B-2 a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{a^2 d \sqrt {a+b \cos (c+d x)}}+\frac {b \left (a^2 B-3 b^2 B+2 a b C\right ) \sin (c+d x)}{a^2 \left (a^2-b^2\right ) d \sqrt {a+b \cos (c+d x)}}+\frac {B \tan (c+d x)}{a d \sqrt {a+b \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.08 (sec) , antiderivative size = 482, normalized size of antiderivative = 1.59 \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\frac {\frac {-\frac {8 a b (-b B+a C) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 \left (-7 a^2 b B+9 b^3 B+4 a^3 C-6 a b^2 C\right ) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 b}{a+b}\right )}{\sqrt {a+b \cos (c+d x)}}+\frac {2 i \left (a^2 B-3 b^2 B+2 a b C\right ) \sqrt {-\frac {b (-1+\cos (c+d x))}{a+b}} \sqrt {-\frac {b (1+\cos (c+d x))}{a-b}} \csc (c+d x) \left (2 a (a-b) E\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right )|\frac {a+b}{a-b}\right )+b \left (2 a \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )-b \operatorname {EllipticPi}\left (\frac {a+b}{a},i \text {arcsinh}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \cos (c+d x)}\right ),\frac {a+b}{a-b}\right )\right )\right )}{a b \sqrt {-\frac {1}{a+b}}}}{(a-b) (a+b)}+\frac {4 \left (a \left (a^2-b^2\right ) B+b \left (a^2 B-3 b^2 B+2 a b C\right ) \cos (c+d x)\right ) \tan (c+d x)}{\left (a^2-b^2\right ) \sqrt {a+b \cos (c+d x)}}}{4 a^2 d} \]

[In]

Integrate[((B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^3)/(a + b*Cos[c + d*x])^(3/2),x]

[Out]

(((-8*a*b*(-(b*B) + a*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*
Cos[c + d*x]] + (2*(-7*a^2*b*B + 9*b^3*B + 4*a^3*C - 6*a*b^2*C)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticPi[
2, (c + d*x)/2, (2*b)/(a + b)])/Sqrt[a + b*Cos[c + d*x]] + ((2*I)*(a^2*B - 3*b^2*B + 2*a*b*C)*Sqrt[-((b*(-1 +
Cos[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Cos[c + d*x]))/(a - b))]*Csc[c + d*x]*(2*a*(a - b)*EllipticE[I*ArcSinh
[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] + b*(2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-
1)]*Sqrt[a + b*Cos[c + d*x]]], (a + b)/(a - b)] - b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a
 + b*Cos[c + d*x]]], (a + b)/(a - b)])))/(a*b*Sqrt[-(a + b)^(-1)]))/((a - b)*(a + b)) + (4*(a*(a^2 - b^2)*B +
b*(a^2*B - 3*b^2*B + 2*a*b*C)*Cos[c + d*x])*Tan[c + d*x])/((a^2 - b^2)*Sqrt[a + b*Cos[c + d*x]]))/(4*a^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(911\) vs. \(2(374)=748\).

Time = 17.32 (sec) , antiderivative size = 912, normalized size of antiderivative = 3.01

method result size
default \(\text {Expression too large to display}\) \(912\)
parts \(\text {Expression too large to display}\) \(1276\)

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+cos(d*x+c)*b)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*B/a*(-cos(1/2*d*x+1/2*c)/a*(-2*sin(1/2*d*x+1
/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)+1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*
cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(
cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-1/2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))
^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^
(1/2))+1/2/a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^
4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))+1/2/a*b*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*
c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2)))-2/a^2*(-B*b+C*a)*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*Ell
ipticPi(cos(1/2*d*x+1/2*c),2,(-2*b/(a-b))^(1/2))-2*b*(B*b-C*a)/a^2/sin(1/2*d*x+1/2*c)^2/(2*b*sin(1/2*d*x+1/2*c
)^2-a-b)/(a^2-b^2)*(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*
d*x+1/2*c)^2*b+EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^
(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*(-2*b/(a-b)*sin(1/2*d*x+
1/2*c)^2+(a+b)/(a-b))^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b))/sin(1/2*d*x+1/2*c)/(-2*b*sin(1/2*d*x+1/2*c)^2+a+b
)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (B + C \cos {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )} \sec ^{3}{\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**3/(a+b*cos(d*x+c))**(3/2),x)

[Out]

Integral((B + C*cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**3/(a + b*cos(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^3/(b*cos(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sec \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^3/(a+b*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sec(d*x + c)^3/(b*cos(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^3(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^3\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^3*(a + b*cos(c + d*x))^(3/2)), x)